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An Axiomatization of General Relativity 
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An axiomatization of the general theory of relativity is proposed. The assumed 
philosophical background is critical realism. None of the "principles" com- 
monly considered as founding the theory, such as (a) the equality of inertial and 
gravitational mass, (b) the principle of equivalence, (c) the principle of general 
covariance, (d) the geodesic postulate, and (e) Mach's principle, are taken as 
axioms in our system. 

1. INTRODUCTION 

I shall not apologize for proposing an axiomatization of  such a 
relevant and profound physical theory as the general theory of  relativity 
(GR). It is my belief that the axiomatization of a theory, whether physical 
or not, is an epistemological need, if only because it brings order and 
systemicity to the former. Of course, the theory must have attained a 
certain degree of maturity so that one may distinguish its basic postulates 
from the heuristic principles, analogies, etc., which are always present in its 
process of birth. 

The latter remarks are not intended to provide an account of physical 
axiomatics. This has been dealt with in detail by many philosophers of 
science, notably by Bunge (1967, 1977, 1979). I shall structure this axiom- 
atization according to the outlines of physical axiomatics proposed by this 
author. The philosophical background intended here is critical realism. 
Two of its theses are central to this work: the objective existence of nature 
and the nonobjective existence of concepts. The relation between these two 
levels of  abstraction is dealt with in Bunge's semantics (Bunge, 1974a,b). 
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Also, I shall freely use his terminology. Readers not familiar with the latter 
are referred to Bunge's works listed in the bibliography. 

To my knowledge, the first explicit axiomatization of GR was given by 
Bunge (1967) (together with the axiomatization of four more theories). The 
present work leans so heavily on it that perhaps it should be called a 
reaxiomatization. The main new features are: (a) The axioms are formu- 
lated by means of the intrinsic geometry of the manifold referring to 
spacetime in GR in its modern spirit; (b) I do not restrict the gravitational 
fields to those associated with isolated physical systems, thereby allowing 
for cosmological models (actually, Bunge makes a serious mistake in 
restricting himself to finite regions of spacetime. In this way it would be 
hard, if possible at all, to appreciate the features of the gravitational field. 
An isolated system is finite three-dimensionally, but not in four dimen- 
sions); (c) the number of axioms is reduced from 16 to 10. 

After a brief note on the heuristic components of the theory in Section 
2, I provide the primitive base in Section 3. Section 4 contains a list of 
interesting defined concepts and in Section 5 I offer the body of the axioms 
or axiom base. In Section 6 a set of comments to the axioms are made 
which should help to understand the whole scheme. Finally, Section 7 
contains a couple of very interesting theorems: the equivalence principle 
and the geodesic postulate. In order to keep this paper within a reasonable 
extension, I restrain from formulating and proving any more theorems 
which would enhance my belief that the system is both p- and d-complete. 
An Appendix is included at the end to specify the precise mathematical 
ideas used here, as they may vary in detail from author to author. 

2. HEURISTIC COMPONENTS 

Most of the treatises on GR lead one to believe that the theory is 
based on a number of "principles." The most common are: (a) the equality 
of inertial and gravitational mass, (b) the principle of equivalence, (c) the 
principle of general covariance, early in the development of the theory, (d) 
the geodesic postulate, and the highly ambiguous (e) Mach's principle. 

Bunge (1967) shows that (a) cannot even be formulated in the 
language of GR; that (c) is a metanomological statement: that is, it refers 
to law statements and therefore is not to be placed on the same status as 
the latter; while, as we shall show, (b) and, as is widely recognized 
nowadays, (d) are theorems of GR. 

All these principles, except perhaps (d), played a part in the construc- 
tion of the theory. They were heuristic clues along with many others, but 
they do not belong in the foundations of the finished theory. Therefore 
none of them will be postulates of our axiom system. 
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I shall not pursue this matter further here. For a formulation and 
discussion of  (a), (b), and (c) the reader is referred to Bunge (1967). 

3. BASIC CONCEPTS 

3-i) {(M', g, V)} is a set of pseudo-Riemannian manifolds, with man- 
ifold M ' ,  where n ~N, metric tensor g, and metric connection V defined on 
the manifold structure. 

3-i-a) M" designates spacetime. 
3-i-b) Some elements x ~M" designate events in spacetime. 
3-i-c) The 2-covariant symmetric tensor field (metric tensor) g desig- 

nates the gravitational potential. 
3-i-d) The connection coefficients 7~, in the dual moving frame 

(eu), (0 ~) designate the components of the gravitational field in such a 
frame. 

3-ii) E is the collection of  all (possible and actual) gravitational fields. 
3-iii) (L} is a family of 2-covariant tensor field functionals of  g and 

possibly of  state variables. An element L~ {L} is called an energy-momen- 
tum tensor. 

3-iv) ,~ is the collection of  macroscopic physical systems other than 
gravitational fields. 

3-v) K is the collection of  reference frames. 
3-vi) x is a negative dimensional constant. 

4. DEFINED CONCEPTS 

4-i) If  {(U~, ~p~)}~/is a C k atlas in M ~, any other equivalent C k atlas 
{(Vp, ~ , )} ,~ j  is a global change of coordinates class C k. If x ~ M "  and 
(U, cp) is a chart in the neighborhood U of x, i.e., x ~ U, any other chart 
(V, ~,) in the neighborhood V of x defines a change of  coordinates in 
Uc~ V, a neighborhood of x. The C k map ~/o ~p-l: cp(Uc~ V)-- ,R" gives 
the "new" coordinates in terms of  the "old" ones. 

4-ii) Any mapping (arbitrary r a n g e ) f  defined on the manifold M' ,  
i.e., f :  M ' - - ,  F, represents an invariant. If  x e M" and (U, ~p) is a chart in the 
neighborhood U of x, f o ~p-i is "the invariant expressed in terms of the 
coordinates in that neighborhood." 

4-iii) Any formula (such as an equation) or statement formulated in 
terms of mathematical concepts derived from the intrinsic geometry of 
(M' ,  g, V) (that is, which does not depend on the coordinates) is called 
"covariant." When an atlas is considered and the concepts above are 
realized using the coordinate system thus given, one says that the formula 
is expressed in terms of the coordinates. Different coordinate systems give 
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different expressions, but one says that the statement is "satisfied when 
subject to arbitrary coordinate transformations." 

4-iv) The curvature operation is defined by 

p(u)v = V.V, + V,V. - Vt.,, ] 

where V. is the covariant derivative in the direction of u, [u, v] is the Lie 
bracket [u, v] = u v -  vu, and u and v are vector fields over M". 

4-v) The curvature or Riemann tensor is 

R ( w ,  a,  u, v) = ~ ( p ( u ,  v) �9 w) 

where at is a 1-form field, aeAl(Mn).  In the dual moving frame (e~), (Oa), 
the components of  R are 

R~v~ = R(e~, 0 p, ev, e~) 

= ( e ~ ) ( ~ L )  - e ~ ( r ~ )  + ~ - ~ g , ~  - c~,~,~," 

where 7~  are the connection coefficients defined by 

Yea = 7 fB 05 | e~ 

and the Cf~ are given by 

[e~, ea] = C~ae ~ 

and are called "the structure coefficients of the moving frame." In the 
coordinate frame (~/gx~), (dx ~) in U, defined naturally by the chart (U, ca), 
~o(x) = x ", one has 

R ~  = a~ rL - a~ r~  + r ~  r ~  - rL r~  

Here #~ denotes a/ax  ~ and the connection coefficients are written as F~#. 
Note: The Einstein summation convention is being used, where summation 
is understood when in an expression an index occurs twice, once as 
superscript and once as subscript. 

The following three definitions apply to a Riemannian connection (see 
the Appendix). 

4-vi) The Ricci tensor is 

4-vii) The curvature scalar is 

R = R% = g"ZR,z 

where 

1 Odet(g~p) 
g ~  m m 

det(g~a) dg~p 
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is the inverse matrix of the matrix formed with the components of the 
metric tensor. It defines a 2-contravariant tensor field g*: 

g* = g~Be~ | e~ 

4-viii) The-Einstein tensor is 

G~ = R ~  - l g ~ R  

4-ix) A reference frame in a set U c M n is a moving frame defined on 
it (tetrad, for n = 4). 

4-x) Let ue Tx (the tangent space of M" at x). The signature used here 
is + - - -  

4-x-a) If  gx(u, u) > 0, u is called "timelike." 
4-x-b) If  g~(u, u) < 0, n is called "spacelike." 
4-x-c) If  g~(u, n) = 0, u is called "null." 
Where gx is the tensor gx ~ @ 2 T* associated by the tensor field g to 

the point x. T* denotes the space dual to T~. 

5. AXIOMS 

Axiom Group I: The Referents 

5-i-a) Z is a nonempty collection. 
5-i-b) Every a ~E designates a gravitational field. 
5-ii-a) E is nonempty, and Z n Z  = ~ ( ~  =empty  set). There is an 

element in ~, D, which represents the absence of a physical system. 
5-ii-b) Every g e e  other than [] designates a macroscopic physical 

system other than a gravitational field. 

Axiom Group II: Spacetime 

5-iii) The dimension n of spacetime is 4. The pseudo-Riemannian 
manifold (M 4, g) is thus called a "hyperbolic manifold." 

5-iv) M 4 is a differentiable manifold of at least class C 4. (We want to 
have a metric tensor field g class C 3 [except possibly for a set of zero 
(Lebesgue) measure]. For that, M 4 must be at least class ca.) 

5-v) For every x ~ M  4, there exists a chart (U, q~) in the equivalent 
class of C 4 atlases which define the differential structure of (M 4, g), such 
that one of the coordinates, say x ~ is timelike; that is, ~/dx ~ is a timelike 
vector at each point of U, and the remaining three coordinates are 
spacelike. This is equivalent to the following condition: in these coordi- 
nates, go0 > 0, and the three-dimensional quadratic form gijviv j is negative 
definite. If goo>0, then (I/u)O/~x ~ with u2=goo, is timelike, and the 
second part of the condition is: the three-dimensional quadratic form 
defined by ( g i j -  goigoj/goo)dxi dxJ, i = 1, 2, 3, is negative definite. 
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Axiom Group III: The Metric 

5-vi) g is a 2-covariant symmetric tensor field over  M 4 of  class C 3, 
except possibly in a set of  (Lebesgue) measure zero. 

Axiom Group IV: Frame and Physical Coordinates (Pointless for L = 0) 

5-vii-a) K ~ ~ and K c ~. 
5-vii-b) Every k ~ K  is a physical reference frame. For  every such 

frame, there exists a point x ~ M  4 and a coordinate neighborhood of 
x, (U, ~o), over which a moving frame (e~), a = 0, 1, 2, 3, can be defined and 
such that (e~) ~_ K. 

Axiom Group V: The Energy-Momentum Tensor 

5-viii-a) Each Le{L} is a symmetric 2-covariant tensor field, func- 
tional of g and possibly of  state variables, over  M 4, of  class C 1 up to a set 
of  (Lebesgue) measure zero. 

5-viii-b) For  every 6 e ~  there exists an Le{L},  which represents the 
energy, momentum, and stresses of  the system. For  6 = [] (the void), 
L = 0 .  

Axiom Group VI: The Field Equations 

5-ix) For  every 6 s ~, there exists a hyperbolic manifold ( M  4, g) and its 
corresponding connection V, defined over  M 4 such that 

G = t c L  

where G is the Einstein tensor and L is the energy-momentum tensor 
functional corresponding to 6 in accord with the previous axiom. 

Axiom Group VII: The Coupling Constant 

5-x) x is a negative constant which represents the coupling of the 
gravitational field with nongravitational systems. It can be written in terms 
of  the Newtonian gravitational constant G and the speed of light in 
vacuum c as 

G 
/~ = - - 8 ~  C4 

of x are L - 1 M - 1 T - 2  (L =length,  M = m a s s ,  The dimensions 
T = time). 
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6. COMMENTS 

Axiom Group I 

In GR, physical systems are partitioned into gravitational and non- 
gravitational. Every macroscopic nongravitational physical system gives 
rise to a gravitational field. I should point out, however, that there are also 
gravitational fields in the absence of any physical systems. These are 
included in E. 

These two axioms are semantical. They assert that there are physical 
systems in nature. Neither the elements of E nor of ~, are concepts nor 
are the gravitational or nongravitational fields themselves. They are 
mere symbols related to the physical systems (except for D, which is 
related to the void, a concept) by the semantic relation of designation 
(Bunge, 1974a). 

E and 2, are collections, not sets. By a collection I mean a set of 
variable membership. Physical systems do not exist as such in nature. They 
are constituted by physical entities but defined by the physicist in the light 
of the physical theories that deal with them. 

Physical systems are restricted to macroscopic ones because this has 
been so since GR was proposed by Einstein. It is true that there have been 
serious efforts to build a quantum field theory of gravitation, but, at 
present, the theory has not been properly born and it would therefore be 
out of place to consider microscopic systems (an electron, say) without 
knowing how to deal with them. 

Axiom Group II 

That the dimension of spacetime is four must seem today a natural 
fact. Since Einstein's proposal of special relativity in 1905 in which time 
loses its absolute character, one has become used to considering it, along 
with space, as relative to the inertial reference frame one cares to single out, 
all inertial reference frames being equivalent to each other. Perhaps one can 
trace the origin of spacetime as a single category to the suggestion of 
Minkowski (1908) of considering the four coordinates (t, x, y, z) as those of 
a four-dimensional space. 

But this is by no means a trivial fact. As early as 1919 (four years after 
Einstein's publication of his general theory) F. E. Kaluza contacted Ein- 
stein proposing a five-dimensional spacetime theory. At that time only two 
of the four fundamental forces that we recognize nowadays were known: 
gravitation, described by GR, and electromagnetism, described by 
Maxwell's theory. Kaluza's idea was to give unified account of the two 
forces. 



2142 Covarrubias 

Today much effort is being devoted to building a unified field theory 
of the four forces. Three can be said to have been unified (the rebel is 
precisely the gravitational force) in a scheme called grand unification, 
although there are still problems (the theory predicts the decay of the 
proton and it has never, been observed). And all theoretical formulations 
are made in more than four dimensions. Three main classes of modem 
theories can be mentioned: the so-called Kaluza-Klein theories, in which 
one of the main problems is to decide how many dimensions the spacetime 
must have, but it is certain that the number should be greater than five; 
supergravity, in which it is clear that the number of dimensions must be 11; 
and the modern string theories, in which mathematical consistency de- 
mands 10 dimensions. It is likely that if a unified field theory will be built 
(and it seems most certain that it will) the spacetime in which we live will 
be found to be more than 4-dimensional. 

Axiom 5-iv) is about the mathematical structure of spacetime. Differ- 
ential geometry is a field in which different authors differ in matters of 
detail. I give in the Appendix the precise definitions that are intended here. 
A manifold is locally Euclidean. This concept is not directly related to 
curvature. The idea is that every point of it belongs to a neighborhood 
which can be coordinated; that is, every point of the neighborhood can be 
assigned a four-tuple (we are assuming n = 4) of real numbers and the 
coordinates of different points in the neighborhood are related in a 
continuous way. This generalizes the concept of "parametric representa- 
tion" of a surface of R 4. These neighborhoods are called charts and the 
"surface" is then covered with them. The concept of a differentiable 
manifold generalizes the concept of a differentiable surface of R4; that is, a 
surface which admits a tangent plane at each of its points. 

At every point of the differentiable manifold a huge algebraic structure 
is built using the local differentiable properties of the manifold. Thus, to 
define the algebraic entities (vectors, tensors, etc.) at least one degree of 
differentiability is used. These in turn can be differentiable if the manifold 
admits one degree of differentiability in addition to those used to define 
them. 

Now, the Einstein equations (axiom 5-ix) involve the Einstein tensor, 
whose definition requries two differentiations, and moreover, they obey the 
Bianchi identities, which involve one more differentiation. Consequently the 
manifold which is to model a physical situation must be at least class C 4. 

Nevertheless one cannot assume such a nice smooth manifold. Accord- 
ing to the work of Hawking and Ellis (1977) on the structure of spacetime 
in the large, every physically acceptable model of the universe should 
contain singularities. These can be of two kinds. Singularities in our past, 
associated with the collapse of the universe as a whole, and singularities in 



Foundations of General Relativity 2143 

the future, associated with the collapse of stars. In the first case we have an 
initial singularity in our past. This result has given strong support to the 
theories known as "big bang" theories in which the universe has an origin, 
evolving from such a singularity. In the second case the singularities are 
inside black holes. This is why there is strong confidence on the existence 
of black holes in nature, although this prediction has not had a direct 
empirical confirmation to date. 

Moreover, even solutions of  the Einstein field equation for relatively 
simple systems, as is the case of  the Schwarzschild solution, exhibit 
singularities. We have therefore to allow for a breakdown of  the smooth- 
ness of the manifold to make room for such singularities. Axiom 5-iv) 
asserts that they have to constitute a set of  measure zero. 

Axiom 5-v) concerns the much discussed principle of general covari- 
ance. We have pointed out that this principle is metanomological (see 
Section 2). In fact, the formulation of  general relativity in terms of the 
abstract geometric mathematical structure of  differential geometry grants 
the requirements of  making its laws independent of the coordinate system 
we care to select. But this does not mean that every coordinate system is 
suited to physica! interpretation. For  example, we would not take as 
physical a coordinate system which makes simultaneous two events con- 
nected causally. This means that we have to take our "t ime" coordinate to 
be consistentwith what we can measure with clocks, that is, with physical 
time. 

This is a very important point. Since the proposal of  the special theory 
of  relativity we have become used to obliterating the distinction between 
space and time and considering spacetime as a four-dimensional continuum. 
Yet, physically (and philosophically) the distinction between these two 
structures remains. For  example, the equations of  motion privilege time. 

It is possible, as Bunge (1967) does, to restrict GR's covariance to those 
coordinate systems which satisfy the requirements to be physically accept- 
able. I prefer to formulate general covariance as "general" as it can be, and 
to postulate that every manifold which is to model spacetime for a physical 
situation can always be coordinated in such a way that we can distinguish 
space from time. But this is a conventional matter. 

Axiom Group III 

As was mentioned previously, the definition of the Einstein tensor 
requires two differentiations, and the fulfillment of  the Bianchi identities 
demands one more degree of differentiability. These differentiations are 
made on the metric tensor field and therefore this tensor field has to be 
class C 3. 
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Aside from the need to make room for the singularities associated with 
the manifold itself, we have to allow for discontinuities in the metric which 
can arise from considering bodies with sharp boundaries (gravitational 
shock waves, for example). We postulate that these discontinuities have to 
take place in a set of Lebesgue measure zero. 

Axiom Group IV 

The first part of axiom vii) asserts that the physical reference systems 
are nongravitational in nature. A gravitational field does not qualify as a 
reference frame. 

In its second part, it is stated that the description of physical phenom- 
ena using reference frames should be made locally. As it happens, it is 
impossible to cover spacetime with a single chart. The simplest examples of 
a non-Euclidean manifold require more than one chart to be successfully 
coordinated. This corresponds to the fact that in nature a single reference 
system does not suffice for its description. So, for every chart, there must 
be in the conceptual scheme a moving frame (tetrad for n = 4) and a 
physical reference frame such that the first mirrors the second. The 
mirroring relation ( ~ )  is semantic and the reader is referred to Bunge's 
semantics (Bunge, 1974a) for details. 

Axiom Group V 

Every physical field theory is formulated by a relation between the 
sources of the field and the field itself. In GR this is done with Einstein's 
equations, which are postulated next. 

Axiom 5-viii) refers to the sources of the gravitational field in GR. 
These are, as we have pointed out (see the comments to the axiom group 
I), all macroscopic nongravitational physical systems. The pertinent infor- 
mation is theoretically given in the energy-momentum tensor. 

This specification is far from trivial. In the first place, a tensor field 
"lives" in a manifold, so the latter should be known in advance of 
specifying an energy-momentum tensor. This amounts to knowing in 
advance the spacetime structure, i.e., the field that the system determines, 
information we cannot have until we solve Einstein's equations. To avoid 
this circularity I postulate the existence, not of an energy-momentum 
tensor itself, but of a tensor field functional of the metric tensor and of 
whatever state variables are pertinent to the problem. I will deal with this 
point in connection with the axiom postulating the Einstein equations in 
the next section of comments. 

The next point to be discussed is that GR makes no provision for 
computing the energy-momentum tensor associated to a physical system; it 
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has to be postulated. The most common procedure for doing so is to find 
out first what is the association in the special theory of relativity. One then 
gives the tensor a covariant form, i.e., one finds the expression of the same 
form which can be formulated in terms of the abstract geometric concepts 
of GR background. For example, ordinary derivatives go into covariant 
derivatives, etc. What we mean by "form" is not very clear, but since the 
energy-momentum tensor is postulated and not derived, there is no need 
for elucidating such a concept. 

And finally, we have to resort to other theories to postulate the 
energy-momentum tensor. Concepts like charge, spin, and even the concept 
of mass, which is central to gravity, are foreign to GR. General relativity 
is not an autonomous theory; it leans heavily on other physical theories, 
notably the special theory of relativity. 

The mathematical properties of the energy-momentum tensor are not 
very demanding; it has to be class C ~. This is so because the Bianchi 
identities must hold (see next set of comments). We allow for a set of 
Lebesgue measure zero in which its differential properties could break 
down. 

A x i o m  Group VI 

This is the most important axiom in this scheme. As is well known, the 
aim of every physical theory is to describe exhaustively the behavior of 
every physical system in its referents [see this term in Bunge's semantics 
(Bunge, 1974a)]. Einstein's equations determine the gravitational field 
"produced" by a nongravitational system. By symmetry, they comprise ten 
differential equations for the ten components of the metric tensor g~.  So it 
would seem that we have a consistent and well-posed mathematical prob- 
lem. However, the situation is more complex than this. 

To start discussing the status of the Einstein equations I shall refer 
first to the epistemological point touched on in the previous section. As was 
mentioned, the energy-momentum tensor cannot be known in advance of 
solving Einstein's equations. On the other hand, we need the energy-mo- 
mentum tensor t o  formulate the equations at all. To avoid this problem 
relativists postula te the  energy-momentum tensor not explicitly but as a 
functional of the metric tensor and of whatever state variables are pertinent 
in the problem. In this way, the unknowns of the problem (the ten 
components g,v) occur on both sides of the equation. For example, if we 
are dealing with a perfect fluid, the energy-momentum tensor functional 
reads 

L =  (p + p ) u |  (6.1) 
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Here, the occurrence of the metric tensor is clear, and the state variables 
which are introduced ar the proper pressure p, the proper density p, and 
the four-velocity vector u. Actually, some more state variables are intro- 
duced in this description, although they do not occur in the energy-momen- 
tum tensor. 

Evidently by solving Einstein's equations we must come out, among 
other things, knowing the energy-momentum tensor explicitly, and this 
requires determining the state variables, which is equivalent to enlarging 
the set of unknowns of the problem. This calls for more equations if the 
mathematical problem is to be complete. The additional equations are 
indeed introduced into the problem and are called constitutive equations. 

As is the case with many fundamental concepts in GR, the constitutive 
equations come from outside the theory. In the case of the perfect fluid 
(6.1), thermodynamic considerations are essential, and indeed one of the 
constitutive equations to be considered is the first law of thermodynamics. 

With this equation counting the mathematical problem may appear 
complete. Yet it is not so. The Bianchi identities 

V" C = 0 (6.2) 

where G is the Einstein tensor (see Section 2) hold in the theory. These are 
not equations, but identities, which really are four differential relations 
among the ten unknowns g,v which hold independently of the ten alge- 
braic-independent relations provided by the Einstein equations. This 
amounts to reducing the number of independent equations from ten to six. 
This means that there are four degrees of freedom which correspond 
exactly to the four degrees of freedom we have to select a coordinate 
system (four x"). Therefore, to solve Einstein's equations we must impose 
what are called coordinate conditions; that is, we select a class of coordi- 
nate systems in advance. 

Moreover, we are sure that the Einstein tensor G obeys the Bianchi 
identities afortiori and from this we demand that the energy-momentum 
tensor should satisfy what is called an energy-momentum conservation 
"law": 

V. L = 0 (6.3) 

which generally imposes differential relations among the state variables. 
The constitutive equations supplemented by equations (6.3) should consti- 
tute an equal number of equations and unknowns when coordinate condi- 
tions have been selected. 

The last equations above are usually considered as an energy and 
momentum conservation "law". Unfortunately we are in want of such a 
result in GR. In fact, the situation is even worse: we do not have a proper 
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definition of energy, nor of momentum in our theory. By proper I mean 
essentially covariant. We only have partial results applicable to asymptoti- 
cally fiat spacetimes. The problem can be traced to the fact that the 
Einstein equations are (highly) nonlinear and this can be interpreted as the 
gravitational field becoming a source of itself in an infinite mechanism. 
That is to say: once we have a gravitational field produced by any source, 
it generates an additional gravitational field, which in turn is also a source 
of gravitational field, etc. But the feature of spacetime of being locally fiat 
or, in more familiar terms, the principle of equivalence, allows us to cancel 
locally any gravitational field by a mere change of coordinates. On the 
other hand, any consideration of energy and momentum has to take into 
account the contribution of the gravitational field itself, which, as can be 
inferred from the above considerations, cannot be covariant. The energy 
and momentum of the gravitational field have been described in a 
nonunique way by quantities called "pseudotensors." 

Also, the field equations are usually thought of as the mechanism by 
which matter determines the structure of spacetime. This is one of the 
versions of the highly ambiguous Mach principle. In fact, the above 
comments and the feature of GR of including spacetimes for L = 0 make 
this assertion as ambiguous as the principle itself. There are theories like 
the Jordan and Brans-Dicke theory (Brans and Dicke, 1961) which try to 
incorporate Mach's principle in a more satisfactory way. 

A final consideration will be made on this axiom. Of the four forces of 
nature, the gravitational force is the only one which governs the dynamics 
of the universe in the large (astronomical dimensions). This is so because 
the so-called strong and weak forces, which are displayed by elementary 
particles, are very short-ranged. They act at distances of the order of 
10 -13 cm; at greater separations they are practically nil. So they do not 
play a part in the interaction of celestial objects. The electromagnetic force 
is long-ranged, but the world, as we know it, is remarkably neutral (equal 
amounts of positive and negative charge). 

Any theory of gravitation, then, must describe cosmology, and the 
models of the universe provided by GR which are consistent with the 
empirical evidence (which is essentially that the latter is homogeneous and 
isotropic at length scales of l0 s light-years and greater) are nonstatic. This 
fact disturbed Einstein so much that he was led to modify his field 
equations in a way that later, when Hubble (1929) in 1927 discovered the 
expansion of the universe, he called "the biggest blunder of my life." He 
proposed instead of axiom 5-ix) the field equations 

G + Ag = EL (6.4) 

where A is a number called the cosmological constant. In this way G would 
not be zero in the vacuum (L = 0). 
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Although at present there is no need for the cosmological constant, 
many relativists are unwilling to abandon it on cosmological grounds. One 
of the motivations to keep it is a reinterpretation of the field equations 
(6.4). If  they are written as 

G = tc(L + L ~vac)) (6.5) 

with 

A L (vat) = - - -  g (6.6) 
/s 

L (v~) is construed as the energy-momentum tensor of the vacuum, which 
would be completely unobservable, except for its gravitational effects. It is 
expected that a quantum theory of gravitation would give an estimation of 
such a quantity. But if this is so, L (vat) would be an object belonging to 
another theory, not to GR. The notion of endowing the vacuum with 
energy, in the form of virtual matter, so common in quantum field theory, 
is foreign to GR. Besides, even if we concede the objective existence of 
possible agents producing a gravitational field in the vacuum, the empirical 
evidence forces the theories dealing with them to be consistent with the 
conspiracy of the latter as to not manifest collectively at all. In other 
words, what we empirically know about the universe is consistent with a 
zero cosmological constant, a fact which puzzles many researchers who 
believe in such agents, extrapolating the notion of vacuum surrounding 
microscopic systems like a hydrogen atom to the vacuum surrounding the 
most macroscopic systems, as are galaxies and clusters of galaxies. They 
find that this particular value is peculiar. Perhaps what is needed is an 
elucidation of the concept of vacuum. 

What I am presenting in this article is an axiomatization of the general 
theory of relativity in a form which is consistent with all the available 
empirical evidence, and conspiracies or not, the latter indicates that the 
cosmological constant should be zero. So axiom 5-ix) is postulated as 
Einstein originally did. 

There is an additional motivation for keeping the cosmological con- 
stant, which will be only briefly described here. The idea of a big-bang 
genesis of the universe was first proposed by George Gamow (1948). To 
account for a universe as we know it nowadays very special initial 
conditions must have held at the moment of creation. As someone put it, 
finding the present universe in this model would be as unlikely as finding a 
pencil balanced on its point after an earthquake. In 1980 Alan H. Guth 
(1981) proposed a model called the inflationary universe according to 
which the latter expanded a factor of 1030 in a fraction of 10 -30  S. This 
scheme solved many of the original big-bang problems, but it is not 
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altogether free from particular initial conditions needed to account for our 
present universe. These are broader and far more plausible, but still needed. 
Guth proposed that the early universe consisted of so-called scalar-field 
particles, which are not the furniture of the universe as we know it today, 
but that are very common in many theories. The density of this scalar field 
had to be approximately constant, and this requirement or initial condition 
is equivalent to postulating the cosmological constant for the young 
universe, at least for a brief time. 

It is expected that many problems will be solved and a more accurate 
knowledge of our universe will be gathered with the so-called gravitational 
wave atronomy. The most optimistic researchers in the field trust that we 
will be able to detect (if they exist!) gravitational waves at the turn of the 
century. 

Axiom Group VII 

In physics, when we relate concepts with different referents, we have to 
couple them, if at all to make the relationship dimensionally consistent. It 
is said that in Einstein's field equations the geometry occurs on the 
left-hand side and that the dynamics on the right-hand side. We couple 
these different concepts with the coupling constant ~:, which has to have the 
value, in terms of the fundamental constants G and c, given in the axiom, 
in order to retrieve Newton's gravitation theory in the circumstances where 
the latter should hold. In these, gravitation should be weak and all 
velocities in the system should be small compared with the speed of light c. 
Of course, these conditions can only hold in coordinate systems very nearly 
Galilean. 

The metanomological statement called the correspondence principle, 
which states that if a physical theory is to supersede another one, it should 
reduce to the latter where it has proved to be successful, is correctly 
satisfied by GR in relation with Newton's theory. This requires the 
coupling constant to be postulated as we did. 

With the aim of not being repetitive, the reader is referred to Bunge's 
axiomatization of GR (Bunge, 1967) for additional interesting comments, 
notably in relation to the issue of regarding the theory a geometrization of 
physics. 

7. THEOREMS 

Theorem I. The equivalence principle. For every gravitational field and 
for each point of spacetime, there is a coordinate system in which the field 
vanishes at the point. 
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P r o o f  This is just the statement that for every point q e M  n, there 
exists a neighborhood U of q in which we can choose normal coordinates 
and in which F~)[q = 0, where ~ 1 , F(~a) = ~(F~a - F ~ )  is the antisymmetriza- 
tion of the connection. For a Riemannian connection, which is what I 
assume, we have F~a = 0. 

Remarks .  For remarks about the connection see the comments in the 
Appendix. In GR the components of this quantity represent the gravita- 
tional field. The metric tensor is the gravitational potential, which does not 
qualify as the field because, among other things, it does not have the 
property of the connection enunciated in this theorem. 

Strictly speaking, the field vanishes only at a point. The principle of 
equivalence is often stated as the fact that it is possible to make a static 
homogeneous gravitational field vanish (Bunge, 1967) by a mere change of 
coordinates. 2 If  such fields (static homogeneous) would exist in GR, the 
statement would be true. However, this is not the case. Actually, there are 
no solutions (curved spacetimes) to the homogeneous and isotropic field 
equations (Robertson-Walker-like element) for the vacuum. The simplest 
solutions arise if we relax the condition of isotropy (Bianchi universes). 

However, this theorem is in accordance with the heuristic equivalence 
principle in that the vanishing of the field at one point guarantees that the 
field will be arbitrarily close to zero in a region of spacetime sufficiently 
close to the point, on account of the continuity of the connection. In fact, 
the region can be chosen small enough so that no physical instrument can 
detect any field inside it. 

Theorem 2. The geodesic postulate. If 6~Z  represents a (structureless) 
test particle, then its corresponding aEZ  is such that in a chart with 
coordinates x" 

d2x" dx~ dx~ = 0 (7.1) 

where s is the "proper time," ds z = g,v dx u dxV. This is the equation of a 
geodesic. 

P r o o f  The corresponding energy-momentum tensor for a point struc- 
tureless particle is 

L ~ = m6(x  ~ -- x~(s))u~u ~ (7.2) 

2Some coordinate systems refer to reference systems, although not all of them. There are many 
coordinate systems suited to a reference system. In the equivalence principle the adequate 
reference system is what we look for. 
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where u" is the four-velocity of the particle, m is the mass of the particle, 
and the Dirac 6 function is treated as a scalar. It is defined so that 

f f ( x  ")6(x 6 - ~o) ~ d 4 x  = f (x  ) (7.3) x 

for any function f (of compact support 3) of the coordinates. Now, equation 
(6.3) in tensor components can be written as 

O~(L~-L-g) = - F ~ B L ~ a x / ~  (7.4) 

If we substitute (7.2) into (7.4) and integrate over any four-dimensional 
volume containing x~(s), equation (7.1) follows straightforwardly. 

Remarks. This theorem applies to a test particle moving in the field 
F~a produced by other massive objects. The corrections to the field due to 
the presence of the particle itself are ignored. This is precisely what is 
meant by a "test" particle. The energy-momentum tensor (7.2) is under- 
stood to be defined outside the region where the rest of the mass-energy 
resides, and the region of integration is taken so as to exclude the latter. 

It must be warned that the use of Dirac 6 functions to specify the 
energy-momentum tensor of test particles causes an infinite correction to 
the field at the position of the particles. However, any other method used 
to deal with the "test" feature of the particles is unsatisfactory in this 
and/or many other respects. 

Our test particle is pointlike and structureless. If  structure is taken into 
account, the geodesic postulate would fail to hold; that is, the particle 
would not move along a geodesic of the complete field. 

I close with a very important final remark. In every classical field 
theory before GR the field equations were supplemented by the appropriate 
equations of motion. When GR was formulated it was believed to share 
this feature, and the geodesic postulate was thought to be necessary in this 
sense. Later it was discovered that in GR the equations of motion are 
included in the field equation through equation (6.3). 

APPENDIX. DEFINITIONS 

1. A topological manifold X n of dimension n is a Hausdorff topologi- 
cal space such that every point has a neighborhood homeomorphic to R n. 

2. A chart (U, ~0) of a manifold X n is an open set U of X ~ called the 
domain of the chart, together with an homeomorphism q~: U ~ V onto an 
open set V c R ~. 

3The support  of  a function is the set where it does not  vanish. 
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3. An atlas of class C k on a manifold X ~ is a set {(Us,~0~)}~z 
of  charts of  X" such that the domains {U~}~z cover X" and the homeo- 
morphisms satisfy the following compatibility condition: the maps 
q~a o ~0~-l: cp~(U~ n Ua) ~ ~pa(U~ n UB) are maps of open sets of  R" into R n 

of class C k. 
4. Two C g atlases {(U~, ~0~)}~1 and {(Ua, q~a)}a~j are equivalent if 

and only if their union (domains {U~}~{Up} and homeomorphisms 
{~0~ }w {tpa }) is again a C k atlas. 

5. A C k manifold M" of dimension n is a topological manifold 
together with an equivalence class of C k atlases (a C k structure). 

6. Tx denotes the tangent vector space at x ~ M " ,  and T* its dual. 
AP(M ") denotes the set of  all p-form fields defined over M ' .  

7. A pseudo-Riemannian manifold is a C 1 manifold M n, together 
with a continuous 2-covariant tensor field g, called the metric tensor such 
that: 

(i) g is symmetric. 
(ii) For  each x ~ M ' ,  the bilineal form gx: Tx x T x ~ R  (g~ is the 

2-covariant symmetric tensor associated by the field to the point x) is 
nondegenerate that is, g~(u, v) = 0 Vv~ T~ if and only if u = 0]. 

8. Any set of  n linearly independent differentiable vector fields (e~) 
which form a basis for the set H k-  I(U) of all C *-  1 vector fields on an 
open set U of a C k manifold M" is called a moving frame (tetrad, for 
n = 4) on U. Such a set may not exist globally on M ~. (On a C k manifold, 
there can only exist C ~ vector fields with r < k - 1.) 

9. A linear connection on a C k (k > 2) manifold M" is a mapping V 
from the set H ( M ' )  of all differentiable vector fields on M n to the set of all 
differentiable tensor fields of type (1, 1) on M": i.e., V: H ( M  n) ~ T[(Mn),  

such that: 
(i) V(u + v) = Vu + Vv 
(ii) V(fu) = elf |  u + j V u  

f is a differentiable function on M' .  Vu is called the covariant derivative or 
absolute differential of u. 

10. The covariant derivative of w in the direction of v in an open set 
U where a moving frame (e~) exists with dual basis (0 ~) is 

Vvw = (Vw)(v, O~)e~ 

11. The covariant derivative can be extended to tensors of any type by 
requiring that: 

(i) fly f =  v( f ) ,  f is a differentiable function on M ~. 
(ii) Vv(t + s) = V~t + VvS. 

(iii) Vv(t |  = V , t |  + t |  V~s. 
(iv) V commutes with the operation of contracted multiplication. 
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Thus, if t is a tensor of  type (p, q), Vt is the tensor type (q + 1, p) 
defined by 

Vt(v, vl . . . . .  Vq ; W l , . . . ,  wp) = (Vvt)(u 1 . . . . .  Vq ; w I . . . . .  wp) 

12. The following theorem is relevant to the axiomatization: 

Theorem.  On a Riemannian manifold (including a pseudo-Rieman- 
nian manifold) there exists a unique connection such that: 

(i) T = 0 .  
(ii) Vg = 0. 

Here T is the torsion tensor defined in terms of  the torsion operation 

~(u ,  v) = Vuv - Vvu  - [u, v] 

as  

T(at, u, v) = 0t(x(u, v)) 

In a natural frame (e~ = d/~x~),  the components of V are denoted by F~p 
and the components of  T are T~a = F ~ , -  F~ .  

R e m a r k .  We have presupposed the conditions of  this theorem to hold 
throughout this work. That is, we have assumed a symmetric connection 
which in natural coordinates takes the form, in terms of the metric, 

The so called Einstein-Caftan theory of  gravity (Cartan, 1992; Traut- 
man, 1972) does not use the condition (i) above and the motivation to have 
a nonvanishing torsion was to relate its antisymmetric part with the 
intrinsic spin of  matter. 

Note that on account of  this theorem we have written (M n, g) instead 
of  (M n, g, V) throughout this work except in the primitive and defined 
concepts. 

A C K N O W L E D G M E N T S  

I am indebted to Profs. M. Bunge, C. L/immerzahl, and M. P. Ryan 
for useful and illuminating discussions. 
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